Subscribe to Updates

    Get the latest creative news from FooBar about art, design and business.

    What's Hot

    Heat Waves Are Overwhelming Honey Bee Hives

    January 17, 2026

    YouTube relaxes monetization guidelines for some controversial topics

    January 17, 2026

    Scientists Are Tracking Mysterious Blackouts Beneath the Sea

    January 17, 2026
    Facebook Twitter Instagram
    • Tech
    • Gadgets
    • Spotlight
    • Gaming
    Facebook Twitter Instagram
    iGadgets TechiGadgets Tech
    Subscribe
    • Home
    • Gadgets
    • Insights
    • Apps

      Google Uses AI Searches To Detect If Someone Is In Crisis

      April 2, 2022

      Gboard Magic Wand Button Will Covert Your Text To Emojis

      April 2, 2022

      Android 10 & Older Devices Now Getting Automatic App Permissions Reset

      April 2, 2022

      Spotify Blend Update Increases Group Sizes, Adds Celebrity Blends

      April 2, 2022

      Samsung May Improve Battery Significantly With Galaxy Watch 5

      April 2, 2022
    • Gear
    • Mobiles
      1. Tech
      2. Gadgets
      3. Insights
      4. View All

      Heat Waves Are Overwhelming Honey Bee Hives

      January 17, 2026

      Scientists Are Tracking Mysterious Blackouts Beneath the Sea

      January 17, 2026

      Scientists Create Living Computers Powered by Mushrooms

      January 16, 2026

      A Strange State of Matter Behaves Very Differently Under Even Weak Magnetism

      January 16, 2026

      March Update May Have Weakened The Haptics For Pixel 6 Users

      April 2, 2022

      Project 'Diamond' Is The Galaxy S23, Not A Rollable Smartphone

      April 2, 2022

      The At A Glance Widget Is More Useful After March Update

      April 2, 2022

      Pre-Order The OnePlus 10 Pro For Just $1 In The US

      April 2, 2022

      Thinking Machines Cofounder’s Office Relationship Preceded His Termination

      January 17, 2026

      The Campaign to Destroy Renee Good

      January 16, 2026

      Our Favorite Compact Power Station Is on Sale for 33% Off

      January 16, 2026

      The 45 Best Movies on Hulu, WIRED's Picks (January 2026)

      January 16, 2026

      Latest Huawei Mobiles P50 and P50 Pro Feature Kirin Chips

      January 15, 2021

      Samsung Galaxy M62 Benchmarked with Galaxy Note10’s Chipset

      January 15, 2021
      9.1

      Review: T-Mobile Winning 5G Race Around the World

      January 15, 2021
      8.9

      Samsung Galaxy S21 Ultra Review: the New King of Android Phones

      January 15, 2021
    • Computing
    iGadgets TechiGadgets Tech
    Home»Tech»Computing»Datadog: How AI code reviews slash incident risk
    Computing

    Datadog: How AI code reviews slash incident risk

    adminBy adminJanuary 9, 2026No Comments5 Mins Read
    Facebook Twitter Pinterest LinkedIn Tumblr Email
    Datadog: How AI code reviews slash incident risk
    Share
    Facebook Twitter LinkedIn Pinterest Email

    Integrating AI into code review workflows allows engineering leaders to detect systemic risks that often evade human detection at scale.

    For engineering leaders managing distributed systems, the trade-off between deployment speed and operational stability often defines the success of their platform. Datadog, a company responsible for the observability of complex infrastructures worldwide, operates under intense pressure to maintain this balance.

    When a client’s systems fail, they rely on Datadog’s platform to diagnose the root cause—meaning reliability must be established well before software reaches a production environment.

    Scaling this reliability is an operational challenge. Code review has traditionally acted as the primary gatekeeper, a high-stakes phase where senior engineers attempt to catch errors. However, as teams expand, relying on human reviewers to maintain deep contextual knowledge of the entire codebase becomes unsustainable.

    To address this bottleneck, Datadog’s AI Development Experience (AI DevX) team integrated OpenAI’s Codex, aiming to automate the detection of risks that human reviewers frequently miss.

    Why static analysis falls short

    The enterprise market has long utilised automated tools to assist in code review, but their effectiveness has historically been limited.

    Early iterations of AI code review tools often performed like “advanced linters,” identifying superficial syntax issues but failing to grasp the broader system architecture. Because these tools lacked the ability to understand context, engineers at Datadog frequently dismissed their suggestions as noise.

    The core issue was not detecting errors in isolation, but understanding how a specific change might ripple through interconnected systems. Datadog required a solution capable of reasoning over the codebase and its dependencies, rather than simply scanning for style violations.

    The team integrated the new agent directly into the workflow of one of their most active repositories, allowing it to review every pull request automatically. Unlike static analysis tools, this system compares the developer’s intent with the actual code submission, executing tests to validate behaviour.

    For CTOs and CIOs, the difficulty in adopting generative AI often lies in proving its value beyond theoretical efficiency. Datadog bypassed standard productivity metrics by creating an “incident replay harness” to test the tool against historical outages.

    Instead of relying on hypothetical test cases, the team reconstructed past pull requests that were known to have caused incidents. They then ran the AI agent against these specific changes to determine if it would have flagged the issues that humans missed in their code reviews.

    The results provided a concrete data point for risk mitigation: the agent identified over 10 cases (approximately 22% of the examined incidents) where its feedback would have prevented the error. These were pull requests that had already bypassed human review, demonstrating that the AI surfaced risks invisible to the engineers at the time.

    This validation changed the internal conversation regarding the tool’s utility. Brad Carter, who leads the AI DevX team, noted that while efficiency gains are welcome, “preventing incidents is far more compelling at our scale.”

    How AI code reviews are changing engineering culture

    The deployment of this technology to more than 1,000 engineers has influenced the culture of code review within the organisation. Rather than replacing the human element, the AI serves as a partner that handles the cognitive load of cross-service interactions.

    Engineers reported that the system consistently flagged issues that were not obvious from the immediate code difference. It identified missing test coverage in areas of cross-service coupling and pointed out interactions with modules that the developer had not touched directly.

    This depth of analysis changed how the engineering staff interacted with automated feedback.

    “For me, a Codex comment feels like the smartest engineer I’ve worked with and who has infinite time to find bugs. It sees connections my brain doesn’t hold all at once,” explains Carter.

    The AI code review system’s ability to contextualise changes allows human reviewers to shift their focus from catching bugs to evaluating architecture and design.

    From bug hunting to reliability

    For enterprise leaders, the Datadog case study illustrates a transition in how code review is defined. It is no longer viewed merely as a checkpoint for error detection or a metric for cycle time, but as a core reliability system.

    By surfacing risks that exceed individual context, the technology supports a strategy where confidence in shipping code scales alongside the team. This aligns with the priorities of Datadog’s leadership, who view reliability as a fundamental component of customer trust.

    “We are the platform companies rely on when everything else is breaking,” says Carter. “Preventing incidents strengthens the trust our customers place in us”.

    The successful integration of AI into the code review pipeline suggests that the technology’s highest value in the enterprise may lie in its ability to enforce complex quality standards that protect the bottom line.

    See also: Agentic AI scaling requires new memory architecture

    Banner for AI & Big Data Expo by TechEx events.

    Want to learn more about AI and big data from industry leaders? Check out AI & Big Data Expo taking place in Amsterdam, California, and London. The comprehensive event is part of TechEx and is co-located with other leading technology events. Click here for more information.

    AI News is powered by TechForge Media. Explore other upcoming enterprise technology events and webinars here.

    AI Business Strategy,AI in Action,Features,Inside AI,World of Work,ai,coding,datadog,development,engineering,infosec,security,toolsai,coding,datadog,development,engineering,infosec,security,tools#Datadog #code #reviews #slash #incident #risk1767983744

    AI code coding datadog development engineering incident infosec reviews Risk Security slash tools
    Share. Facebook Twitter Pinterest LinkedIn Tumblr Email
    admin
    • Website
    • Tumblr

    Related Posts

    Supreme Court hacker posted stolen government data on Instagram

    January 17, 2026

    California AG sends Musk’s xAI a cease-and-desist order over sexual deepfakes

    January 16, 2026

    From OpenAI’s offices to a deal with Eli Lilly — how Chai Discovery became one of the flashiest names in AI drug development

    January 16, 2026
    Add A Comment

    Leave A Reply Cancel Reply

    Editors Picks

    McKinsey tests AI chatbot in early stages of graduate recruitment

    January 15, 2026

    Bosch’s €2.9 billion AI investment and shifting manufacturing priorities

    January 8, 2026
    8.5

    Apple Planning Big Mac Redesign and Half-Sized Old Mac

    January 5, 2021

    Autonomous Driving Startup Attracts Chinese Investor

    January 5, 2021
    Top Reviews
    9.1

    Review: T-Mobile Winning 5G Race Around the World

    By admin
    8.9

    Samsung Galaxy S21 Ultra Review: the New King of Android Phones

    By admin
    8.9

    Xiaomi Mi 10: New Variant with Snapdragon 870 Review

    By admin
    Advertisement
    Demo
    iGadgets Tech
    Facebook Twitter Instagram Pinterest Vimeo YouTube
    • Home
    • Tech
    • Gadgets
    • Mobiles
    • Our Authors
    © 2026 ThemeSphere. Designed by WPfastworld.

    Type above and press Enter to search. Press Esc to cancel.